Spreading of the Novel Coronavirus (COVID-19): Mathematical Modeling in Malaysia Perspective

A Fargana 1, A Arifutzzaman 2*

1 Department of Manufacturing and Material Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia
2 Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
* Corresponding author: A Arifutzzaman E-mail: arifrahat@sunway.edu.my, ORCID: 0000-0002-5476-6568

ABSTRACT

A new coronavirus, SARS-CoV-2 (COVID-19), arisen towards the end of December 2019 in the city of Wuhan, province of Hubei, People’s Republic of China. It has spread to the entire world very short duration and very fast. The main goal is to investigate the spreading rate of the coronavirus in Malaysia by using mathematical modeling based on the real-time data. Due to the insufficient precautions, the model shows a very fast change. Based on the estimation, this model regards that after the certain period (about time \(t_1\) = ~50) the number of infections will go to decrease.

Keywords: Coronavirus, COVID-19, mathematical modeling, spreading rate, Malaysia

INTRODUCTION

In human body, a novel coronavirus (2019-nCoV) has been detected, that causes the different respiratory illness such as a typical pneumonia with chest tightness, chest pain and shortness of breath [1]. This disease officially named as COVID-19. An outbreak of COVID-19 infection has been testified in the winter month of December 2019 in mainland China, Hubei Province with the city of Wuhan as the documented epicenter [2-4]. COVID-19 infection has been spread to other areas of China and whole world rapidly within a very short duration of time. The World Health Organization (WHO) declared this COVID-19 outbreak as a ‘Public Health Emergency of International Concern’ on 30 January 2020, precisely to increase the level of preparations for the countries that required extra support [5].

At the last week of January 2020 (24 January 2020) first patient of COVID-19 has detected in Malaysia. Until 20 April 2020, the number of COVID-19-positive cases reached 5425, while the number of related deaths increased to 94. The fatality rate is 1.64%. Currently (20 April), 60 patients are being treated at intensive care units (ICU), with 33 of them requiring the use of ventilators. Total recovered patients are 2647 and its recovery rate is 49.7% [6]. In all cities in Malaysia decreed to control the public movement with the many other measures such as tracing close contacts, quarantining infected cases, promoting social consensus on self-protection like wearing face mask in public area among others. Though, until the completing of this manuscript, the epidemic is still on going on, and the daily confirmed cases uphold to the higher side. Yet, there are no vaccine is available as antiviral treatment for this disease. Due to the
The following initial value problem (IVP) is stated the COVID-19 disease:

\[
\frac{dP}{dt} = \frac{m}{2\sqrt{t}} P \left(N - P \right) \tag{2}
\]

\[
P(0) = P_0 \tag{3}
\]

\[
P(t_1) = P_1 \tag{4}
\]

The solution of the IVP will give a formula connected to COVID-19 cases that is how many people will get infected in the very near future. First, solving the Equation 2 using separable variables, we have

\[
\int \frac{dP}{P (N - P)} = \int \frac{m}{2\sqrt{t}} dt
\]

\[
\ln P - \ln(N - P) = Nm\sqrt{t} + ln c
\]

\[
P(t) = \frac{N c}{e^{-Nm\sqrt{t}} + c}
\]

Using the initial condition from Equation 3, we have

\[
c = \frac{P_0}{N - P_0} \tag{6}
\]

After that, using the initial condition from Equation 4, we have

\[
P(t) = \frac{N}{\left(1 + \frac{1}{12}\ln\left(\frac{P_0(N-P_1)}{P_1(N-P_0)}\right)\right)/\sqrt{t_1}}
\]

RESULTS AND DISCUSSION

In this present situation in Malaysia, it is considered that to get the COVID-19 infected person (patients) is P=32000, using an optimum date of 20 March 2020 as \(t = 0\), \(P(0) = P_0 = 1030\) patients and \(t_1 = 30\) as 20 April 2020 with \(P(30) = P_1 = 5425\) patients, let us measure the Figure 1, where we may observe the spreading rate of COVID-19 outbreak, meaning to predict the approximate number of infected patients by the next 25-days.

Figure 1 shows the prediction of COVID-19 patients estimated by the developed model based on the real time data for Malaysia. Prediction is estimated with the 5% deviations in Figure 1(a). Prediction is estimated with the 10% deviations in Figure 1(b). Because the number of infected persons depended with the various measures and steps taken into the society. In is seen that, from the starting day (\(t_1=0\)) the number of patients is increased gradually until the \(t_1=30\). Within this time the number of infections is raised by maintaining the almost ± 5% deviations. However, after this period the model predicts a bit higher side of the
infection rate. Despite that mentionable, model predicted data projected likely linear increase of COVID-19 infections. Based on the estimation, this model regards that after the certain period (about $t_1=\sim50$) the number of infections will go to decrease. As, authorities are trying to control several factors such as social distancing, cleanliness, tracking of movement records of the infected persons and controlling of people intake into the country. However, it is tough to make the number to zero ($P(t)=0$). Because, COVID-19 diseases are declared as highly infectious [4]. Even if single or very minimal numbers are left unidentified and untreated then this might be resumed to be increased again.

CONCLUSIONS

From the results of the mathematical modeling after the certain period (about $t_1=\sim50$) the number of infections will go to decrease due to the taken necessary measures and precautions by the relevant authorities. It can be optimistic that Malaysia is in a better situation rather than many other countries in the world. If the government take the present precaution such as lockdown, isolation, socially support, those who have symptoms of COVID-19 infection tests in hospital and finally special take care of elder people than within a reasonable period the number of COVID-19 patients will be decreased enormously.

DECLARATION OF CONFLICT OF INTEREST

The authors received no financial support for the research and/or authorship of this article. There is no conflict of interest.
